Asymptotics for Weighted Random Sums

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotics for Weighted Random Sums

Let {Xi} be a sequence of independent, identically distributed random variables with an intermediate regularly varying right tail F̄ . Let (N,C1, C2, . . .) be a nonnegative random vector independent of the {Xi} with N ∈ N ∪ {∞}. We study the weighted random sum SN = ∑Ni=1 CiXi , and its maximum, MN = sup1≤k<N+1 ∑ki=1 CiXi . This type of sum appears in the analysis of stochastic recursions, incl...

متن کامل

Strong Laws for Weighted Sums of Negative Dependent Random Variables

In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.

متن کامل

strong laws for weighted sums of negative dependent random variables

in this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. the results on i.i.d case of soo hak sung [9] are generalized and extended.

متن کامل

Asymptotics for dependent sums of random vectors

We consider sequences of length m of n-tuples each with k non-zero entries chosen randomly from an Abelian group or finite field. For what values of m does there exist a subsequence which is zero-sum or linearly dependent respectively? We report some results relating to these problems.

متن کامل

Strong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables

We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Probability

سال: 2012

ISSN: 0001-8678,1475-6064

DOI: 10.1239/aap/1354716592